Mesenchymal-epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas.
نویسندگان
چکیده
Patients with tuberous sclerosis complex (TSC) develop hamartomas containing biallelic inactivating mutations in either TSC1 or TSC2, resulting in mammalian target of rapamycin (mTOR) activation. Hamartomas overgrow epithelial and mesenchymal cells in TSC skin. The pathogenetic mechanisms for these changes had not been investigated, and the existence or location of cells with biallelic mutations ("two-hit" cells) was unclear. We compared TSC skin hamartomas (angiofibromas and periungual fibromas) with normal-appearing skin of the same patient, and we observed more proliferation and mTOR activation in hamartoma epidermis. Two-hit cells were not detected in the epidermis. Fibroblast-like cells in the dermis, however, exhibited allelic deletion of TSC2, in both touch preparations of fresh tumor samples and cells grown from TSC skin tumors, suggesting that increased epidermal proliferation and mTOR activation were not caused by second-hit mutations in the keratinocytes but by mesenchymal-epithelial interactions. Gene expression arrays, used to identify potential paracrine factors released by mesenchymal cells, revealed more epiregulin mRNA in fibroblast-like angiofibroma and periungual fibroma cells than in fibroblasts from normal-appearing skin of the same patient. Elevation of epiregulin mRNA was confirmed with real-time PCR, and increased amounts of epiregulin protein were demonstrated with immunoprecipitation. Epiregulin stimulated keratinocyte proliferation and phosphorylation of ribosomal protein S6 in vitro. These results suggest that hamartomatous TSC skin tumors are induced by paracrine factors released by two-hit cells in the dermis and that proliferation with mTOR activation of the overlying epidermis is an effect of epiregulin.
منابع مشابه
Cardiac Rhabdomyomas and Congenital Hypothyroidism: A Coincidence or Hamartia
Cardiac rhabdomyomas are the most common primary cardiac tumors in children. These tumors are generally asymptomatic, although they may be associated with neonatal tuberous sclerosis complex. Despite the fact that thyroid dysfunction rarely occurs in tuberous sclerosis, papillary adenomas (hamartomas) of the thyroid gland have been reported in a number of autopsies. Herein, we present the case ...
متن کاملHamartomas of the iris and ciliary epithelium in tuberous sclerosis complex.
Astrocytic hamartomas of the retina are the principal ocular manifestation of tuberous sclerosis complex. Iris abnormalities are rare in tuberous sclerosis complex and include focal areas of stromal depigmentation and atypical colobomata. We describe 2 patients who were found on histopathological examination to have lesions consistent with hamartomas of the iris pigment epithelium and ciliary b...
متن کاملA Patient with Tuberous Sclerosis Complex and Spinal Muscular Atrophy; A Case Report
Background Tuberous Sclerosis Complex (TSC), and Spinal Muscular Atrophy (SMA) are two inherited disorders while they are genetically independent. TSC is characterized by the formation of multiple hamartomas in nearly all organs. SMA is a destructive neurological disorder leading to progressive muscular weakness and atrophy. Case Presentation</e...
متن کاملEvidence that TSC2 acts as a transcription factor and binds to and represses the promoter of Epiregulin
The TSC2 gene, mutated in patients with tuberous sclerosis complex (TSC), encodes a 200 kDa protein TSC2 (tuberin). The importance of TSC2 in the regulation of cell growth and proliferation is irrefutable. TSC2 in complex with TSC1 negatively regulates the mTOR complex 1 (mTORC1) via RHEB in the PI3K-AKT-mTOR pathway and in turn regulates cell proliferation. It shows nuclear as well as cytoplas...
متن کاملNew insights into the pathophysiology of the tuberous sclerosis complex: Crosstalk of mTOR- and hippo-YAP pathways in cell growth
Tuberous Sclerosis Complex (TSC) is a genetic disease causing uncontrolled growth of hamartomas involving different organ systems. In the last decade, dysregulation of the mTORC1 pathway was shown to be a main driver of tumor growth in TSC. Recently, a new crosstalk was detected between the mTORC1 and the Hippo-YAP pathway, another major cell signaling cascade controlling cell growth and organ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 9 شماره
صفحات -
تاریخ انتشار 2008